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The drainage of a tank by gravity is an old, but knotty problem. The
tank may be drained by just a hole (orifice situation) or may be
drained through an attached pipe. The pipe may be vertical or

horizontal or may include a full piping system with vertical drop and
horizontal extension with valves and fittings, etc. The tank usually has a
cylindrical shape with a vertical wall, but the bottom may be flat, conical,
hemispherical or other shape. Sometimes there is interest in draining the
tank completely dry, in which case the bottom shape needs to be
accounted for, and sometimes not. In most cases turbulent flow is
assumed, and the solutions are useful in plant situations. However, often
overlooked is the fact that this geometry is widely used in tube viscometry,
in which the laminar flow of a fluid through an attached tube is used to
measure its viscosity. Various corrections must be made to get accurate
results from an instrument of this type. So the laminar flow case is also
important. In some cases the tank is drained by gravity alone; in others,
as in the tube viscometer, there is an added pressure head. 

When the tank is drained by a hole, Torricelli’s equation is used to
describe the discharge velocity and flow rate (de Nevers, 1991; Wilkes,
1999; Bird, et al., 2002). This neglects friction losses in the tank and the
vena contracta, the contraction of the fluid jet a bit beyond the hole, and
is also dependent on turbulent flow or a flat velocity profile. These effects
are compensated for by a discharge coefficient, which is usually taken as
the orifice coefficient; 0.61 for Reynolds numbers greater than about
10,000, but is sometimes reported as 0.63 (Wilkes, 1999). This value
often depends on the Reynolds number and on the type of pressure tap
used (for an orifice in a pipe), and the shape of the metal edge defining
the orifice hole; for example, radiused, square-edged or sharp-edged can
have quite a significant effect (Perry and Greene, 1997). The classical
solution for the drainage time is outlined by de Nevers (1991) and Bird,
et al. (2002) and appears in many textbooks on fluid mechanics and
related fields. This assumes turbulent flow or flat velocity profile of the
exiting fluid, but does not include a discharge coefficient and is therefore
a solution to a hypothetical problem.

When free drainage (without the use of a pump) is through a pipe
(vertical or horizontal) or a pipeline system including elbows, tees,
valves, etc. the problem becomes much more complex. This problem
has received a lot of attention in the last 15 years. In a recent paper,
Keffer (2001) gives the classic analysis method, which is application of
the steady-state energy balance equation (sometimes broadly referred to
as the Bernoulli equation) coupled with an unsteady-state mass balance.
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The tank drainage problem with pipeline attached
is studied in this work. Laminar and turbulent formulations
of this unsteady-state flow problem are derived and
evaluated by experimental data. Additional literature
models are also evaluated for comparison. Several
experimental configurations were used including a
small tank with a vertical tube, the same with various-
sized orifices, a large tank with a horizontal pipe, and
a large tank including a piping system with elbows,
vertical drop and horizontal extension. Not all the
models performed well under all conditions.
Limitations of the models are discussed. The model
derived by Loiacono and the model we derived (an exact
equivalent) showed the best for both laminar and
turbulent flow, predicting drainage times to better
than ± 8%, on average. 

On a étudié dans ce travail le problème du
drainage des réservoirs munis de conduites. Les
formulations laminaires et turbulentes de ce problème
d’écoulement en régime non permanent ont été
calculées et évaluées à l’aide de données expérimentales.
D’autres modèles venant de la littérature scientifique
ont également été évalués à des fins de comparaison.
Plusieurs configurations expérimentales ont été
utilisées, notamment : un petit réservoir muni d’un
tube vertical, le même réservoir comprenant des
orifices de tailles diverses, un grand réservoir muni
d’une conduite horizontale, un grand réservoir équipé
d’un système de conduites ayant des coudes, une
chute verticale et une extension horizontale. Tous les
modèles n’ont pas donné de bons résultats dans
toutes les conditions. Les limites des modèles sont
analysées. Le modèle établi par Loiacono et le modèle
que nous avons calculé (un équivalent strict) montrent
le meilleur potentiel autant pour l’écoulement
laminaire que turbulent, prédisant des temps de
drainage jusqu’à plus ± 8 % en moyenne.
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If all the correct terms are included, friction losses in particular,
this equation is not solvable in closed form, which Keffer points
out. A closed form solution requires some simplifying assumptions.
The assumptions made by Keffer were not the ones generally
used and gave faulty results, but a computer solution was
offered that fits his experimental data very well. Experimental
data are sorely lacking in the literature, and this has led to other
erroneous conclusions about these systems. 

Since the head is measured from the surface of the liquid to
the tube exit, it will include the pipe length if the tube is vertical
rather than horizontal. In the horizontal tube case, the head is
independent of the pipe length, whereas in the vertical tube
case, the head increases with increasing pipe length. This leads
to some interesting effects and underscores the need for proper
analytical solutions, as discussed in more detail later on.
Whether the flow is laminar or turbulent also has a major impact
on the dependence of efflux time on exit pipe length. Figures 1
and 2 illustrate the varieties of behaviour. In the horizontal exit
pipe case, the efflux time increases with pipe length for
turbulent as well as laminar flow. This is expected due to
increase in friction with pipe length. But in the vertical exit pipe
case it is surprising to see a decrease in efflux time as length
increases for turbulent flow (reaching a minimum as L→∞), but
not for laminar flow. 

The classic development and solution to this problem from a
plant engineering perspective is given by Loiacono (1987) for
cylindrical flat-bottomed tanks, and added to by Summerfeld
and Schwarzhoff (1988) for vessels with hemispherical heads,
by Sommerfeld and Shoaei (1989) for tanks with elliptical
heads, and by Kossik (2000) for vessels with a conical bottom.
Turbulent flow is assumed, and the drain pipe is vertical. Bird, et
al (2002) gives solutions for both a spherical tank and a conical
tank without piping.

The purpose of this work is to tie all the loose ends together
and come up with a comprehensive solution to all these kinds
of problems, including the limit of zero pipe length. More

importantly, the purpose of this work is to test descriptive
equations for tank drainage by experiment, to see which ones
actually predict the drainage times well, and which ones don’t. 

Analytical Models
The classical development of energy balance coupled with
unsteady-state mass balance is presented by Bird, et al. (2002),
de Nevers (199l), Loiacono (1987), and in somewhat more
detailed form by Keffer (2001). Keffer presents a computer
method for solution of the differential equation, as does Kossik
(2000); both are available on Web-sites listed in the respective
papers. Loiacono (1987) gives an analytical form developed by
using standard hydrodynamic assumptions. We have developed
our own along the lines of Loiacono (1987) but using the
resistance coefficient rather than equivalent length. 

The standard tank drainage operation is from a vertical,
cylindrical tank. The drainage hole may be in the bottom or the
side of the tank. The exit pipe may be horizontal, vertical, or
may comprise a complex piping system with vertical drop as
well as horizontal extension. Or the exit pipe may be very short
or an orifice equivalent. The mechanical energy balance can be
written in driving force equals resistance format as:

where ∆z is the difference between the liquid level and the
outlet of the pipe, ρ is the fluid density, g is the gravitational
acceleration, ∆P is the pressure driving force if the tank is
pressurized (this term is zero for free drainage), f is the Fanning
friction factor, L is the length of straight pipe, d is the pipe
diameter (D is the tank diameter), v is the fluid velocity in the
pipe or the exit velocity, and K is the resistance coefficient to
account for fittings in the line, entrance and exit losses, etc. The
pump work term is omitted, since no pump is used, and the velocity
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Figure 1. Typical results for tank drainage times (with attached piping)
for experimental set-up and dimensions provided by Keffer (2001) for
turbulent flow of water, using Equation (3).

Figure 2. Typical results for tank drainage times (with attached piping)
for experimental set-up and dimensions provided by Keffer (2001) for
laminar flow of a fluid of 10 cP viscosity, using Equation (5).



of the surface of the fluid in the tank is taken to be negligible in
comparison to the velocity of the fluid in the pipe. This is the
standard application of the energy balance to this problem. 

The (unsteady-state) mass balance can be expressed as:

where h is the height of the liquid in the tank.
The solution is obtained by solving Equation (1) for v,

substituting this into Equation (2) and solving the differential
equation. This is the standard method illustrated in Bird et al.
(2002), used by Loiacono (1987) and others. Our solution for
the vertical pipe case treats the friction factor as a constant and is:

where t is the efflux time to drain the tank from fluid height Hi
to Hf, and Lv is the vertical drop of the exit pipe. Here it is
convenient to define H to be relative to the tank bottom or the
centreline of where the exit pipe begins, for example, if the pipe
exits horizontally from the tank and not from the bottom. Then
Lv is the vertical drop from this point to the pipe exit. For the
horizontal pipe case, Lv = 0.  The assumption of constant friction
factor is not a bad one. The value of f can be checked easily by
calculating the Reynolds number, and if the average f is different
than the initial estimate, that can be used iteratively, if
necessary, to get a more correct formula. This was noted by
Kossik (2000). The exit kinetic energy loss (K = 1) and the entrance
loss from tank to pipe (K = 0.5) are included in the ∑K’s term.
These factors would show up in the equivalent-length term of the
Loiacono equation, which is the exact equivalent of Equation
(3), with Leq substituting for the L term and the ∑K’s term
dropped. The Loiacono equation is a typical alternative
formulation for handling friction losses, but values of Leq are
less easily found in the literature than values of resistance
coefficient, K, so Equation (3) may be preferred over that given
by Loiacono.

If the flow includes a pressure head, the equation reads:

where the pressure term (assumed to be a constant) shows up
inside the square root terms. If the pressure is greater on
the outside of the tank than on the inside, thereby opposing
the drainage rather than assisting it, the ∆P term would be
negative. This is the most general equation.

In laminar flow, the friction factor is not constant, and it is
very difficult to estimate the resistance coefficient or friction loss
of fittings, contractions, etc. with any degree of accuracy. Some
estimates can be found in the Crane Technical Paper No. 410
(1985). If the flow is laminar, we assume all the friction loss
term is in the pipe alone, and Bird, et al. (2002) gives a solution
which is shown below in our format:
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but this neglects the exit kinetic energy and other friction losses
in the tank. It may be argued that these are negligible anyway,
but that will be tested later. In any case, the exit kinetic energy
term is 1/2 v2, where the kinetic energy correction factor (Bird,
et al., 2002) is used because of the laminar velocity profile. If
this term is included in the energy balance, it results in an
analytically unsolvable equation. However, Equation (3) can be
used for laminar flow as well, if the friction factor is calculated
as 16/Re, where Re is an average Reynolds number for the flow. 

If the pipe has zero length (the orifice equivalent), Equation (3)
could be used with L = 0, or a new equation could be re-derived
using the orifice instead of a pipe. In that case, v is given by
Torricelli’s equation, and the orifice coefficient, C0, could be
used to correct it. Thus: 

In all these cases, analytical solutions can be obtained by
making reasonable simplifying assumptions. Figures 1 and 2
show typical results of predicted efflux time from a tank with
piping attached (using Equation (3) for turbulent flow in Figure
1, and using Equation (5) for laminar flow in Figure 2) for a tank
drainage dimension and situation given by Keffer (2001). The
tank is 15 cm  in diameter and is drained from a height of 28
cm  to 5 cm . One notices in both cases, the vertical tube drains
quite a bit faster than the horizontal, because the head increases
as the pipe length increases, however there is a limiting flow in
both laminar and turbulent situations as L/d→∞ for the vertical
tube case. These limits can be found by taking dt/dL as L→∞. This
is not so simple analytically, but can be done easily numerically.
In the horizontal pipe case, the head remains constant, and the
drainage time continually increases. In the turbulent flow
situation (Figure 1), there is a finite drainage time (equivalent to
an orifice value) at L/d = 0, but in the laminar (Figure 2)
situation there is not, because all the friction losses were
assumed to be accounted for in the pipe; hence a pipe of zero
length has zero friction loss and gives zero drainage time, which
cannot be true. Therefore the laminar equations cannot be valid
for very short pipes. The laminar flow case for an orifice is
complicated by the orifice coefficient being a strong function of
Reynolds number, hence there is no analytical solution for this case.

Experimental 
In all cases, the tanks were vertical cylindrical tanks with shallow
cones on the bottom. Tanks were drained from one level to
another (Hi to Hf), never completely emptied. We did experiments
with attached pipes in both vertical and horizontal directions,
and with orifices and short L/d pipes, and one piping system
with vertical drop and horizontal extension containing fittings.
We also did some experiments with additional pressurization.
Turbulent flow experiments were done with water at room
temperature; laminar flow experiments were done with a 98%
glycerol/water solution at room temperature. 

The procedure was very straightforward. In both small and
large tanks, a ball valve was used to shut off flow. The diameter
of the large tank was about 37 cm and that of the small one,
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7.5 cm. Hard, stainless steel tubing (smooth wall), of diameters
ranging from about 0.3 cm to 0.7 cm, was used in the small
tank experiments, and hard-drawn copper water pipe (also
smooth wall) of diameter 1.9 cm was used with the large tank.
Timing was started right after the first liquid exited the tube.
Levels were measured with a rule, timing was done with a
stopwatch, pressure (when used) was measured by a manometer
in the small tank and a calibrated pressure gauge in the large tank. 

Results and Discussion
Turbulent Flow Case 
The turbulent flow results are shown in Figures 3 and 4, for large L/d
and short L/d respectively and for free drainage. Both figures show
that Equation (3) does a very good job of predicting the efflux times
for turbulent flow throughout the L/d range. The highest deviation
is about 15% at only two points out of about 30 in Figure 4, and the
average per cent error, computed from the per cent error (defined
as the standard deviation/mean) of replicated runs, is less than 8%. 

The orifice equation formulation, Equation (6) predicted
about 30% high at L/d = 0 when an orifice coefficient of 0.61
was used. The tank drainage situation is not exactly the same as
the orifice in a pipe, and it may be expected that 0.61 is not the
correct coefficient to use. The way the orifice is made has a
significant effect on the coefficient. The 0.61 coefficient only
applies to sharp-edged orifices with the bevel on the
downstream side. If the bevel is upstream, a totally different C0
must be used. Our orifice matches none of the literature types,
being a drilled-out plug with a hole thickness of about 0.1 to
0.2 mm and hole diameters from 0.335 to 0.729 cm. The
Marks’ Mechanical Engineer’s Handbook (1996) recommends a
coefficient of 0.80 for short tubes (L/d≈1), and this is echoed in
some of the literature (Schwarzhoff and Sommerfeld, 1998;
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Figure 3. Results of turbulent flow experiments with water at longer
L/d. Actual efflux times compared to predicted values of Equation (3)
or (4). Ratio of 1.0 is perfect agreement. Figure 4. Results of turbulent flow experiments with water at short L/d.

Actual efflux times compared to predicted values. Ratio of 1.0 is perfect
agreement.

Figure 5. Results of laminar flow experiments with 98% glycerol/water
solution at longer L/d. Actual efflux times compared to predicted
values. Ratio of 1.0 is perfect agreement.

Figure 6. Results of laminar flow experiments with 98% glycerol/water
solution at short L/d. Actual efflux times compared to predicted values.
Ratio of 1.0 is perfect agreement.



Koehler, 1984; Foster, 1981). Using this value improves the fit
markedly, bringing the data into almost exact agreement with
theory, as shown in the figure. Surprisingly, Equation (3), our
equivalent to the Loiacono equation, predicts well at both low
and high L/d, also including L/d = 0. Presumably, it would not
predict well for the orifice situation, if the discharge exit was a
true sharp-edged orifice.

Added Pressure Head 
Experiments were also done with added pressure head in the
larger tank, where the pipe system contained mixed horizontal
and vertical sections and included fittings. The tank had to be
closed to pressurize, and consequently a sight glass had to be used
to get a measure of liquid level. We used low pressurization for
practical reasons, but also not to dominate the liquid level
driving force. Equation (4) predicted the efflux times to better
than 5% in our best runs, and to about 15% where we had to
make estimates of level. 

A short summary of the data for turbulent flow situations
follows. Reynolds numbers for the vertical tube ranged from
7,000 to about 18,000; for the horizontal tube from 17,000 to
26,000, and larger pipe with fittings, vertical drop and
additional pressure from 20,000 to about 70,000. The largest
deviation was about 15% in six occurrences in 90 runs, with an
average per cent error, defined as previously, of just slightly less
than 8%.

Laminar Flow Case 
The laminar flow results are shown in Figures 5 and 6, for large
L/d and short L/d respectively. Both Equation (3), with laminar
friction factor, and Equation (5), the laminar equation, were
used. In general, Equation (3) does a slightly better job at the
larger L/d, but both Equation (3) and Equation (5) give
essentially the same predictions here. 

For short-length tubes, 0 ≤ L/d ≤ 3, the laminar equation is
still quite decent at L/d = 2, but gets progressively worse and
fails completely at L/d = 0. This is not surprising, given the
formulation of Equation (5). It is surprising that Equation (5) is
so good down to an L/d ratio as short as two. Equation (3) does
better, but it also starts to underpredict at L/d = 1.5, and
predicts low (not zero) for L/d = 0. It does not suffer from the
same limitation as the laminar equation, because it includes an
energy loss term other than pipe friction. The turbulent flow K
values cannot be correct for the laminar case, and so it, too,
becomes inaccurate when other forms of friction dominate the
pipe friction. If appropriate values of K could be found or
developed, this equation has the potential to predict correctly
throughout the range of L/d for laminar as well as turbulent
flow. However, K tends to be a complicated function of
Reynolds number and size in these cases, and specific information
is scarce.

We also tried the orifice equation, Equation (6), and it, too, is
plotted on Figure 6. It gives the best prediction at L/d = 0, as
might be expected, and is not very good elsewhere, as also
might be expected. The orifice equation looks as if it could be
used for L/d = 0, if the correct C0 was employed. In the laminar
case, C0 is not constant, does not equal 0.61, and is a complicated
function of Reynolds number and hole size. Data matching our
exact case here is not available, but using the classic chart
provided by Perry’s Handbook (1997), one can see that for Re
= 4, which is typical for the runs we did, the orifice coefficient
would be about 0.32, which would bring the prediction into

almost exact agreement with the experimentally measured
efflux times.

A short summary of the data for laminar flow follows. The
Reynolds numbers ranged from 0.07 to about 7.0 for the laminar
flow runs. L/d ranged from 0 to about 138; experimental data
collection times ranged from 5 to about 280 s. Differences in
height for the drainage ranged from 1 cm to about 10 cm. The
largest deviation was about 32% for threeoccurrences in 36
runs with L/d from 1.5 to about 138. The average per cent error
was about 14% for both Equation (3) and Equation (5). At L/d
about 0, no equation predicted well, except the orifice equation
with C0 = 0.32 as noted above.

Equation (3) can be used for non-Newtonian fluids, as well,
for both laminar and turbulent flows if friction factor can be
calculated. For a procedure for calculating the non– Newtonian
friction factor using the power-law model see, for example,
Perry’s Chemical Engineers’ Handbook, Section 5-26,27 (1984). 

Conclusions
The equation of Loiacono, and its equivalent presented here,
does an excellent job of predicting efflux times for drainage of
a tank with or without pipe attached, and with or without
additional pressure head, with horizontal or vertical exit pipe or
some combination of same, with or without fittings, etc. in the
line, and for any L/d, turbulent or laminar flow (presuming good
estimates of K or equivalent length can be found for laminar
flow situations). This equation should also be valid for non-
Newtonian fluids where a friction factor can be calculated. 

The efflux time for tank drainage without pipe can be
accurately described by incorporating a correct orifice coefficient
for both laminar and turbulent flow. This is very dependent on
the geometry of the opening. We found that C0 = 0.8, the short
tube correction coefficient, to be a very good fit for our thick-edged
orifice drilled out from a plug, as well as for short L/d up to
about 3.0. The commonly used 0.61 orifice coefficient should
not be used for anything but an actual, sharp edged orifice with
bevel facing downstream.

Nomenclature
C0 orifice coefficient, dimensionless
d tube or pipe diameter, (m)
D tank diameter, (m)
f Fanning friction factor
g gravitational acceleration, (m/s2) 
hf friction losses, m of fluid
H height of fluid in tank, (m)
K resistance coefficient
L length of straight pipe, (m)
Leq total equivalent length of pipe, (m)
Lv vertical drop of pipe, (m)
t efflux time, (s)
v fluid velocity, (m/s)
z height of fluid in tank, (m)

Greek Symbols
∆P pressure difference, inside to outside of tank, (Pa)
µ fluid viscosity, (Pa⋅s)
ρ fluid density, (kg/m3)

Subscripts
f final conditions
i initial conditions
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